Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.598
Filtrar
1.
Photochem Photobiol Sci ; 23(4): 763-780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519812

RESUMO

Nerve agents are the most notorious substances, which can be fatal to an individual because they block the activity of acetylcholinesterase. Fighting against unpredictable terrorist assaults and wars requires the simple and quick detection of chemical warfare agent vapor. In the present contribution, we have introduced a rhodamine-based chemosensor, BDHA, for the detection of nerve gas-mimicking agents diethylchlorophosphate (DCP) and diethylcyanophosphonate (DCNP) and mustard gas-mimicking agent 2-chloroethyl ethyl sulfide (CEES), both in the liquid and vapor phase. Probe BDHA provides the ability for detection by the naked eye in terms of colorimetric and fluorometric changes. It has been revealed that the interaction between nerve agents mimics and probe BDHA facilitates spirolactam ring opening due to the phosphorylation process. Thus, the highly fluorescent and colored species developed while probe BDHA is colorless and non-fluorescent due to the intramolecular spirolactam ring. Moreover, probe BDHA can effectively recognize DCP, DCNP, and CEES in the µM range despite many toxic analytes and could be identified based on the response times and quantum yield values. Inexpensive, easily carried paper strips-based test kits were developed for the quick, on-location solid and vapor phase detection of these mustard gas imitating agents (CEES) and nerve gas mimicking agents (DCP and DCNP) without needing expensive equipment or skilled personnel. More remarkably, the test strips' color and fluorescence can be rapidly restored, exposing them to triethyl amine (TEA) for cyclic use, suggesting a potential application in the real-time identification of chemical warfare agents. To accomplish the on-location application of BDHA, we have experimented with soil samples to find traces of DCP. Therefore, the chromo-fluorogenic probe BDHA is a promising, instantaneous, and on-the-spot monitoring tool for the selective detection of DCP, DCNP, and CEES in the presence of others.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda/análogos & derivados , Agentes Neurotóxicos , Nitrofenóis , Organofosfatos , Compostos Organofosforados , Sarina , Agentes Neurotóxicos/química , Acetilcolinesterase , Corantes Fluorescentes/química , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/química
2.
J Comput Chem ; 45(15): 1303-1315, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38363124

RESUMO

This study addresses a comprehensive assessment of the interaction between chemical warfare agents (CWA) and acetylcholinesterase (AChE) systems, focus on the intriguing pnictogen-bond interaction (PnB). Utilizing the crystallographic data from the Protein Data Bank pertaining to the AChE-CWA complex involving Sarin (GB), Cyclosarin (GF), 2-[fluoro(methyl)phosphoryl]oxy-1,1-dimethylcyclopentane (GP) and venomous agent X (VX) agents, the CWA is systematically displaced by increments of 0.1 Å along the PO bond axis, extending its distance by 4 Å from the original position. The AIM analysis was carried out and consistently revealed the presence of a significant interaction along the PO bond. Investigating the intrinsic nature of the PnB, the NBO and the EDA analysis unearthed the contribution of orbital factors to the overall energy of the system. Strikingly, this observation challenges the conventional σ-hole explanation commonly associated with such interactions. This finding adds a layer of complexity to understanding of PnB, encouraging further exploration into the underlying mechanisms governing these intriguing chemical phenomena.


Assuntos
Acetilcolinesterase , Substâncias para a Guerra Química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Compostos Organofosforados/química , Sarina/química , Substâncias para a Guerra Química/química
3.
Chem Biol Interact ; 392: 110929, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417730

RESUMO

Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Camundongos , Animais , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/química , Agentes Neurotóxicos/toxicidade , Nível de Efeito Adverso não Observado , Substâncias para a Guerra Química/toxicidade , Oximas/farmacologia , Oximas/uso terapêutico , Oximas/química , Compostos de Piridínio/farmacologia , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/química , Colinesterases , Acetilcolinesterase , Antídotos/farmacologia , Antídotos/uso terapêutico
4.
Talanta ; 272: 125785, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394750

RESUMO

Recent terrorist assaults have demonstrated the need for the exploration and design of sustainable and stable chemical sensors with quick reaction times combined with great sensitivity. Among several classes of chemical warfare agents, nerve agents have been proven to be the most hazardous. Even short-term exposure to them can result in severe toxic effects. Human beings inadvertently face the after-effects of these chemicals even several years after these chemicals were used. Due to the extreme toxicity and difficulty in handling, dimethyl methylphosphonate (DMMP), a simulant of nerve agents with much lesser toxicity, is frequently used in laboratories as a substitute. Having a chemical structure almost identical to those of nerve agents, DMMP can mimic the properties of nerve agents. Through this paper, authors have attempted to introduce the evolution of several chemical sensors used to detect DMMP in recent years, including field-effect transistors, chemicapacitors, chemiresistors, and mass-sensitive sensors. A detailed discussion of the role of nanomaterials as chemical sensors in the detection of DMMP has been the main focus of the work through a comprehensive overview of the research on gas sensors that have been reported making use of the properties of a wide range of nanomaterials.


Assuntos
Substâncias para a Guerra Química , Nanoestruturas , Agentes Neurotóxicos , Humanos , Agentes Neurotóxicos/toxicidade , Compostos Organofosforados/toxicidade , Compostos Organofosforados/química , Substâncias para a Guerra Química/análise
5.
Rapid Commun Mass Spectrom ; 38(5): e9701, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355882

RESUMO

RATIONALE: Nitrogen mustards (NMs) are blistering chemical warfare agents. The ability to detect NMs in environmental samples is very important for obtaining forensic evidence. The most common analytical techniques for NM detection are gas chromatography-mass spectrometry, which detects NMs in their intact form but is disadvantaged by high limits of detection (LODs), and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) of their hydrolysis products, which do not provide robust evidence to support NM use. METHODS: We developed a novel approach to detect and identify NMs using LC/ESI-MS/MS after chemical derivatization. The method is based on ethoxide-promoted ethanolysis prior to analysis. The effects of reaction time, temperature, ethoxide concentration and chromatography behavior were studied and optimized. In the developed procedure, 0.1% (v/v) sodium ethoxide solution is added to the NMs in ethanol and agitated for 2 h at 50°C, followed by LC/ESI-MS/MS, without any other pretreatment. RESULTS: The ethanolysis reaction efficiencies were evaluated in ethanolic extracts from soil, asphalt, and ethanol contaminated with 0.5% (v/v) diesel fortified with NMs at a five-point calibration curve. The calibration curves showed good linearity in the range of 0.05-1 ng/mL, with an R2 value of 0.99, and were similar to those of LC/MS-grade ethanol, with almost no observable matrix effects. The derivatization products were stable at room temperature, with LODs of 10 pg/mL, in all investigated extracts. CONCLUSIONS: Through this newly developed strategy, the derivatization of active NMs by ethanolysis was achieved for the first time, and these derivatization products can serve as specific indicators for the use and presence of NMs. The methodology can also verify trace levels of NM chemical warfare agents collected in war or terror scenarios in forensic investigations.


Assuntos
Substâncias para a Guerra Química , Compostos de Mostarda Nitrogenada , Mecloretamina/análise , Substâncias para a Guerra Química/química , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida/métodos , Compostos de Mostarda Nitrogenada/análise , Etanol , Cromatografia Líquida de Alta Pressão/métodos
6.
Ecotoxicol Environ Saf ; 272: 116018, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325275

RESUMO

Nerve agents (G- and V-series) are a group of extremely toxic organophosphorus chemical warfare agents that we have had the opportunity to encounter many times on a massive scale (Matsumoto City, Tokyo subway and Gulf War). The threat of using nerve agents in terrorist attacks or military operations is still present, even with establishing the Chemical Weapons Convention as the legal framework. Understanding their environmental sustainability and health risks is critical to social security. Due to the risk of contact with dangerous nerve agents and animal welfare considerations, in silico methods were used to assess hydrolysis and biodegradation safely. The environmental fate of the examined nerve agents was elucidated using QSAR models. The results indicate that the investigated compounds released into the environment hydrolyse at a different rate, from extremely fast (<1 day) to very slow (over a year); V-agents undergo slower hydrolysis compared to G-agents. V-agents turned out to be relatively challenging to biodegrade, the ultimate biodegradation time frame of which was predicted as weeks to months, while for G-agents, the overwhelming majority was classified as weeks. In silico methods for predicting various parameters are critical to preparing for the forthcoming application of nerve agents.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Animais , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/química , Substâncias para a Guerra Química/toxicidade , Agentes Neurotóxicos/toxicidade , Hidrólise , Tóquio
7.
Arch Toxicol ; 98(3): 897-909, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38172301

RESUMO

Sulfur mustard (SM) is a highly toxic blister agent which has been used many times in several wars and conflicts and caused heavy casualties. Ease of production and lack of effective therapies make SM a potential threat to public health. SM intoxication causes severe damage on various target organs, such as the skin, eyes, and lungs. In addition, SM exposure can also lead to hepatotoxicity and severe liver injuries. However, despite decades of research, the molecular mechanism underlying SM-induced liver damage remains obscure. SM can be converted into various products via complex hepatic metabolism in vivo. There are some pieces of evidence that one of the oxidation products of SM, divinyl sulfone (DVS), exhibits even more significant toxicity than SM. Nevertheless, the molecular toxicology of DVS is still hardly known. In the present study, we confirmed that DVS is even more toxic than SM in the human hepatocellular carcinoma cell line HepG2. Further mechanistic study revealed that DVS exposure (200 µM) promotes pyroptosis in HepG2 cells, while SM (400 µM) mainly induces apoptosis. DVS induces gasdermin D (GSDMD) mediated pyroptosis, which is independent of caspases activation but depends on the large amounts of reactive oxygen species (ROS) and severe oxidative stress produced during DVS exposure. Our findings may provide novel insights for understanding the mechanism of SM poisoning and may be helpful to discover promising therapeutic strategies for SM intoxication.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Sulfonas , Humanos , Gás de Mostarda/toxicidade , Caspases/metabolismo , Piroptose , Hepatócitos , Estresse Oxidativo , Substâncias para a Guerra Química/metabolismo
8.
Arch Toxicol ; 98(3): 791-806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267661

RESUMO

We herein present for the first time the phosphylated (*) tetrapeptide (TP)-adduct GlyGluSer198*Ala generated from butyrylcholinesterase (BChE) with proteinase K excellently suited for the verification of exposure to toxic organophosphorus nerve agents (OPNA). Verification requires bioanalytical methods mandatory for toxicological and legal reasons. OPNA react with BChE by phosphonylation of the active site serine residue (Ser198) forming one of the major target protein adducts for verification. After its enzymatic cleavage with pepsin, the nonapeptide (NP) PheGlyGluSer*AlaGlyAlaAlaSer is typically produced as biomarker. Usually OPNA occur as racemic mixtures of phosphonic acid derivatives with the stereocenter at the phosphorus atom, e.g. (±)-VX. Both enantiomers react with BChE, but the adducted NP does not allow their chromatographic distinction. In contrast, the herein introduced TP-adducts appeared as two peaks when using a stationary reversed phase (1.8 µm) in micro-liquid chromatography-electrospray ionisation tandem-mass spectrometry (µLC-ESI MS/MS) analysis. These two peaks represent diastereomers of the (+)- and (-)-OPNA adducted to the peptide that comprises chiral L-amino acids exclusively. Concentration- and time-dependent effects of adduct formation with (±)-VX and its pure enantiomers (+)- and (-)-VX as well as with (±)-cyclosarin (GF) were investigated in detail characterising enantioselective adduct formation, stability, ageing and spontaneous reactivation. The method was also successfully applied to samples from a real case of pesticide poisoning as well as to samples of biomedical proficiency tests provided by the Organisation for the Prohibition of Chemical Weapons.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Compostos Organotiofosforados , Butirilcolinesterase/metabolismo , Espectrometria de Massas em Tandem/métodos , Compostos Organotiofosforados/toxicidade , Compostos Organofosforados/toxicidade , Agentes Neurotóxicos/toxicidade , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/química
9.
Toxicol Appl Pharmacol ; 483: 116834, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266871

RESUMO

PURPOSE: Sulfur mustard (SM), a bi-functional alkylating agent, was used during World War I and the Iran-Iraq war. SM toxicity is ten times higher in eyes than in other tissues. Cornea is exceptionally susceptible to SM-injuries due to its anterior positioning and mucous-aqueous interphase. Ocular SM exposure induces blepharitis, photosensitivity, dry eye, epithelial defects, limbal ischemia and stem cell deficiency, and mustard gas keratopathy leading to temporary or permanent vision impairments. We demonstrated that dexamethasone (Dex) is a potent therapeutic intervention against SM-induced corneal injuries; however, its mechanism of action is not well known. Investigations employing proteomic profiling (LC-MS/MS) to understand molecular mechanisms behind SM-induced corneal injury and Dex efficacy were performed in the rabbit cornea exposed to SM and then received Dex treatment. PEAKS studio was used to extract, search, and summarize peptide identity. Ingenuity Pathway Analysis was used for pathway identification. Validation was performed using immunofluorescence. One-Way ANOVA (FDR < 0.05; p < 0.005) and Student's t-test (p < 0.05) were utilized for analyzing proteomics and IF data, respectively. Proteomic analysis revealed that SM-exposure upregulated tissue repair pathways, particularly actin cytoskeleton signaling and inflammation. Prominently dysregulated proteins included lipocalin2, coronin1A, actin-related protein2, actin-related protein2/3 complex subunit2, actin-related protein2/3 complex subunit4, cell division cycle42, ezrin, bradykinin/kininogen1, moesin, and profilin. Upregulated actin cytoskeleton signaling increases F-actin formation, dysregulating cell shape and motility. Dex reversed SM-induced increases in the aforementioned proteins levels to near control expression profiles. Dex aids corneal wound healing and improves corneal integrity via actin cytoskeletal signaling and anti-inflammatory effects following SM-induced injuries.


Assuntos
Substâncias para a Guerra Química , Lesões da Córnea , Gás de Mostarda , Animais , Coelhos , Gás de Mostarda/toxicidade , Substâncias para a Guerra Química/toxicidade , Mediadores da Inflamação/metabolismo , Actinas/metabolismo , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Córnea/metabolismo , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/tratamento farmacológico , Citoesqueleto de Actina/metabolismo , Dexametasona/efeitos adversos
10.
Anal Methods ; 16(4): 515-523, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38205668

RESUMO

Nerve agents are the most toxic chemical warfare agents that pose severe threat to human health and public security. In this work, we developed a novel fluorescent probe NZNN based on naphthylimide and o-phenylenediamine to detect nerve agent mimic diethylchlorophosphonate (DCP). DCP underwent a specific nucleophilic reaction with the o-phenylenediamine group of NZNN to produce a significant fluorescence turn-on response with high selectivity, exceptional linearity, bright fluorescence, rapid response (<6 s) and a low detection limit (30.1 nM). Furthermore, a portable sensing device was fabricated for real-time detection of DCP vapor with excellent performance. This portable and sensitive device is favorable for monitoring environmental pollution and defense against chemical warfare agents.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Fenilenodiaminas , Humanos , Corantes Fluorescentes , Substâncias para a Guerra Química/análise , Compostos Organofosforados
11.
J Chromatogr A ; 1716: 464645, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38219625

RESUMO

Alkylphosphonofluoridic Acids (APFA) are the major thermal degradation products of G- and A-series nerve agents and thus play a vital role in the verification analysis of Chemical Weapons Convention. Present study focuses on the development of sample clean-up, derivatization procedures and gas chromatography tandem mass spectrometric analysis of APFA in aqueous samples. APFA were found to be much more delicate than the corresponding alkylphosphonic acids and thus required subtle optimizations. Retention of analytes on silica and polymer-based anion exchangers followed by elution under alkaline conditions yielded best recoveries. Elution under acidic conditions led to partial or complete degradation of the analytes to alkylphosphonic acids. Silylation reactions, particularly with MTBSTFA were found the best in terms of chromatographic responses and resolution of the derivative peaks. Methylations with diazomethane, which requires acidic reaction media, failed to produce desired yields of the derivatives. Under optimized conditions, the analytes produced the recoveries ranging from 76.9 to 94.5% with RSD ≤9.2%. The best LOD's in the tandem mass spectrometric analysis ranged from 13 to 56 ng/ml. The applicability of the method was tested by spiking the analytes in the retained aqueous samples received for the 52nd proficiency test conducted by the Organization for the Prohibition of Chemical Weapons (OPCW).


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Agentes Neurotóxicos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Substâncias para a Guerra Química/análise , Limite de Detecção , Espectrometria de Massas em Tandem , Ácidos , Água/química
12.
J Pharmacol Exp Ther ; 388(2): 469-483, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37316330

RESUMO

Sulfur mustard (SM) is an ominous chemical warfare agent. Eyes are extremely susceptible to SM toxicity; injuries include inflammation, fibrosis, neovascularization (NV), and vision impairment/blindness, depending on the exposure dosage. Effective countermeasures against ocular SM toxicity remain elusive and are warranted during conflicts/terrorist activities and accidental exposures. We previously determined that dexamethasone (DEX) effectively counters corneal nitrogen mustard toxicity and that the 2-hour postexposure therapeutic window is most beneficial. Here, the efficacy of two DEX dosing frequencies [i.e., every 8 or 12 hours (initiated, as previously established, 2 hours after exposure)] until 28 days after SM exposure was assessed. Furthermore, sustained effects of DEX treatments were observed up to day 56 after SM exposure. Corneal clinical assessments (thickness, opacity, ulceration, and NV) were performed at the day 14, 28, 42, and 56 post-SM exposure time points. Histopathological assessments of corneal injuries (corneal thickness, epithelial degradation, epithelial-stromal separation, inflammatory cell, and blood vessel counts) using H&E staining and molecular assessments (COX-2, MMP-9, VEGF, and SPARC expressions) were performed at days 28, 42, and 56 after SM exposure. Statistical significance was assessed using two-way ANOVA, with Holm-Sidak post hoc pairwise multiple comparisons; significance was established if P < 0.05 (data represented as the mean ± S.E.M.). DEX administration every 8 hours was more potent than every 12 hours in reversing ocular SM injury, with the most pronounced effects observed at days 28 and 42 after SM exposure. These comprehensive results are novel and provide a comprehensive DEX treatment regimen (therapeutic-window and dosing-frequency) for counteracting SM-induced corneal injuries. SIGNIFICANCE STATEMENT: The study aims to establish a dexamethasone (DEX) treatment regimen by comparing the efficacy of DEX administration at 12 versus 8 hours initiated 2 hours after exposure. DEX administration every 8 hours was more effective in reversing sulfur mustard (SM)-induced corneal injuries. SM injury reversal during DEX administration (initial 28 days after exposure) and sustained [further 28 days after cessation of DEX administration (i.e., up to 56 days after exposure)] effects were assessed using clinical, pathophysiological, and molecular biomarkers.


Assuntos
Substâncias para a Guerra Química , Lesões da Córnea , Gás de Mostarda , Animais , Coelhos , Gás de Mostarda/toxicidade , Gás de Mostarda/metabolismo , Córnea , Substâncias para a Guerra Química/toxicidade , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia , Dexametasona/farmacologia
13.
J Pharmacol Exp Ther ; 388(2): 546-559, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37914412

RESUMO

Vesicants such as arsenicals and mustards produce highly painful cutaneous inflammatory and blistering responses, hence developed as chemical weapons during World War I/II. Here, using lewisite and sulfur mustard surrogates, namely phenylarsine oxide (PAO) and 2-chloroethyl ethyl sulfide (CEES), respectively, we defined a common underlying mechanism of toxic action by these two distinct classes of vesicants. Murine skin exposure to these chemicals causes tissue destruction characterized by increase in skin bifold thickness, Draize score, infiltration of inflammatory cells, and apoptosis of epidermal and dermal cells. RNA sequencing analysis identified ∼346 inflammatory genes that were commonly altered by both PAO and CEES, along with the identification of cytokine signaling activation as the top canonical pathway. Activation of several proinflammatory genes and pathways is associated with phosphorylation-dependent activation of heat shock protein 90α (p-HSP90α). Topical treatment with known HSP90 inhibitors SNX-5422 and IPI-504 post PAO or CEES skin challenge significantly attenuated skin damage including reduction in overall skin injury and clinical scores. In addition, highly upregulated inflammatory genes Saa3, Cxcl1, Ccl7, IL-6, Nlrp3, Csf3, Chil3, etc. by both PAO and CEES were significantly diminished by treatment with HSP90 inhibitors. These drugs not only reduced PAO- or CEES-induced p-HSP90α expression but also its client proteins NLRP3 and pP38 and the expression of their target inflammatory genes. Our data confirm a critical role of HSP90 as a shared underlying molecular target of toxicity by these two distinct vesicants and provide an effective and novel medical countermeasure to suppress vesicant-induced skin injury. SIGNIFICANCE STATEMENT: Development of effective and novel mechanism-based antidotes that can simultaneously block cutaneous toxic manifestations of distinct vesicants is important and urgently needed. Due to difficulties in determining the exact nature of onsite chemical exposure, a potent drug that can suppress widespread cutaneous damage may find great utility. Thus, this study identified HSP90 as a common molecular regulator of cutaneous inflammation and injury by two distinct warfare vesicants, arsenicals and mustards, and HSP90 inhibitors afford significant protection against skin damage.


Assuntos
Arsenicais , Substâncias para a Guerra Química , Gás de Mostarda , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Substâncias para a Guerra Química/toxicidade , Irritantes , Pele , Gás de Mostarda/toxicidade , Arsenicais/metabolismo , Arsenicais/farmacologia
14.
J Pharmacol Exp Ther ; 388(2): 518-525, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37914413

RESUMO

Nitrogen mustard (NM) is a known surrogate of sulfur mustard, a chemical-warfare agent that causes a wide range of ocular symptoms, from a permanent reduction in visual acuity to blindness upon exposure. Although it has been proposed that the two blistering agents have a similar mechanism of toxicity, the mode of NM-induced cell death in ocular tissue has not been fully explored. Therefore, we hypothesized that direct ocular exposure to NM in mice leads to retinal tissue injury through chronic activation of the unfolded protein response (UPR) PERK arm in corneal cells and VEGF secretion, eventually causing cell death. We topically applied NM directly to mice to analyze ocular and retinal tissues at 2 weeks postexposure. A dramatic decline in retinal function, measured by scotopic and photopic electroretinogram responses, was detected in the mice. This decline was associated with enhanced TUNEL staining in both corneal and retinal tissues. In addition, exposure of corneal cells to NM revealed 228 differentially and exclusively expressed proteins primarily associated with the UPR, ferroptosis, and necroptosis. Moreover, these cells exhibited activation of the UPR PERK arm and an increase in VEGF secretion. Enhancement of VEGF staining was later observed in the corneas of the exposed mice. Therefore, our data indicated that the mechanism of NM-induced ocular toxicity should be carefully examined and that future research should identify a signaling molecule transmitted via a prodeath pathway from the cornea to the retina. SIGNIFICANCE STATEMENT: This study demonstrated that NM topical exposure in mice results in dramatic decline in retinal function associated with enhanced TUNEL staining in both corneal and retinal tissues. We also found that the NM treatment of corneal cells resulted in 228 differentially and exclusively expressed proteins primarily associated with ferroptosis. Moreover, these cells manifest the UPR PERK activation and an increase in VEGF secretion. The latter was also found in the corneas of the cexposed mice.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Animais , Camundongos , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neuropatia Óptica Tóxica , Córnea , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/toxicidade , Gás de Mostarda/metabolismo , Resposta a Proteínas não Dobradas
15.
Arch Toxicol ; 98(1): 267-275, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38051368

RESUMO

Nerve agents are organophosphate chemical warfare agents that exert their toxic effects by irreversibly inhibiting acetylcholinesterase, affecting the breakdown of the neurotransmitter acetylcholine in the synaptic cleft. Due to the risk of exposure to dangerous nerve agents and for animal welfare reasons, in silico methods have been used to assess acute toxicity safely. The next-generation risk assessment (NGRA) is a new approach for predicting toxicological parameters that can meet modern requirements for toxicological research. The present study explains the acute toxicity of the examined V-series nerve agents (n = 9) using QSAR models. Toxicity Estimation Software Tool (ver. 4.2.1 and ver. 5.1.2), QSAR Toolbox (ver. 4.6), and ProTox-II browser application were used to predict the median lethal dose. The Simplified Molecular Input Line Entry Specification (SMILES) was the input data source. The results indicate that the most deadly V-agents were VX and VM, followed by structural VX analogues: RVX and CVX. The least toxic turned out to be V-sub x and Substance 100A. In silico methods for predicting various parameters are crucial for filling data gaps ahead of experimental research and preparing for the upcoming use of nerve agents.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Compostos Organotiofosforados , Animais , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/química , Agentes Neurotóxicos/toxicidade , Agentes Neurotóxicos/química , Acetilcolinesterase/metabolismo , Compostos Organotiofosforados/toxicidade
16.
Toxicol Lett ; 391: 26-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048886

RESUMO

The bispyridinium oxime HI-6 DMS is in development as an improved therapy for the treatment of patients exposed to organophosphorus nerve agents. The aim of the work described in this paper was to provide non-clinical data to support regulatory approval of HI-6 DMS, by demonstrating efficacy against an oxime-sensitive agent, GB and an oxime-resistant agent, GD. We investigated the dose-dependent protection afforded by therapy including atropine, avizafone and HI-6 DMS in guinea-pigs challenged with GB or GD. We also compared the efficacy of 30 mg.kg-1 of HI-6 DMS to an equimolar dose of the current in-service oxime P2S and the dichloride salt of HI-6 (HI-6 Cl2). In the treatment of GB or GD poisoning there was no significant difference between the salt forms. The most effective dose of HI-6 DMS in preventing lethality following challenge with GB was 100 mg.kg-1; though protection ratios of at least 25 were obtained at 10 mg.kg-1. Protection against GD was lower, and there was no significant increase in effectiveness of HI-6 DMS doses of 30 or 100 mg.kg-1. For GD, the outcome was improved by the addition of pyridostigmine pre-treatment. These data demonstrate the benefits of HI-6 DMS as a component of nerve agent therapy. © Crown copyright (2023), Dstl.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Animais , Cobaias , Agentes Neurotóxicos/toxicidade , Oximas/uso terapêutico , Compostos de Piridínio/uso terapêutico , Atropina/farmacologia , Atropina/uso terapêutico , Reativadores da Colinesterase/uso terapêutico , Substâncias para a Guerra Química/toxicidade , Antídotos/farmacologia , Antídotos/uso terapêutico
17.
J Pharmacol Exp Ther ; 388(2): 526-535, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977813

RESUMO

Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since World War I. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. SM cytotoxicity emerges, in part, through DNA alkylation and double-strand breaks (DSBs). Because DSBs can naturally be repaired by DNA damage response pathways with low efficiency, we hypothesized that enhancing the homologous recombination pathway could pose a novel approach to mitigate SM injury. Here, we demonstrate that a dilithium salt of adenosine diphosphoribose (INV-102) increases protein levels of p53 and Sirtuin 6, upregulates transcription of BRCA1/2, enhances γH2AX focus formation, and promotes assembly of repair complexes at DSBs. Based on in vitro evidence showing INV-102 enhancement of DNA damage response through both p53-dependent and p53-independent pathways, we next tested INV-102 in a rabbit preclinical model of corneal injury. In vivo studies demonstrate a marked reduction in the incidence and severity of secondary keratopathies in INV-102-treated eyes compared with vehicle-treated eyes when treatment was started 24 hours after SM vapor exposure. These results suggest DNA repair mechanisms are a viable therapeutic target for SM injury and suggest topical treatment with INV-102 is a promising approach for SM as well as other conditions associated with DSBs. SIGNIFICANCE STATEMENT: Sulfur mustard gas corneal injury currently has no therapeutic treatment. This study aims to show the therapeutic potential of activating the body's natural DNA damage response to activate tissue repair.


Assuntos
Substâncias para a Guerra Química , Lesões da Córnea , Gás de Mostarda , Animais , Coelhos , Gás de Mostarda/toxicidade , Proteína BRCA1 , Proteína Supressora de Tumor p53 , Qualidade de Vida , Proteína BRCA2 , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/tratamento farmacológico , Substâncias para a Guerra Química/toxicidade , Reparo do DNA , Dano ao DNA
18.
J Pharmacol Exp Ther ; 388(2): 560-567, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37863486

RESUMO

Inhaled toxicants are used for diverse purposes, ranging from industrial applications such as agriculture, sanitation, and fumigation to crowd control and chemical warfare, and acute exposure can induce lasting respiratory complications. The intentional release of chemical warfare agents (CWAs) during World War I caused life-long damage for survivors, and CWA use is outlawed by international treaties. However, in the past two decades, chemical warfare use has surged in the Middle East and Eastern Europe, with a shift toward lung toxicants. The potential use of industrial and agricultural chemicals in rogue activities is a major concern as they are often stored and transported near populated areas, where intentional or accidental release can cause severe injuries and fatalities. Despite laws and regulatory agencies that regulate use, storage, transport, emissions, and disposal, inhalational exposures continue to cause lasting lung injury. Industrial irritants (e.g., ammonia) aggravate the upper respiratory tract, causing pneumonitis, bronchoconstriction, and dyspnea. Irritant gases (e.g., acrolein, chloropicrin) affect epithelial barrier integrity and cause tissue damage through reactive intermediates or by direct adduction of cysteine-rich proteins. Symptoms of CWAs (e.g., chlorine gas, phosgene, sulfur mustard) progress from airway obstruction and pulmonary edema to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which results in respiratory depression days later. Emergency treatment is limited to supportive care using bronchodilators to control airway constriction and rescue with mechanical ventilation to improve gas exchange. Complications from acute exposure can promote obstructive lung disease and/or pulmonary fibrosis, which require long-term clinical care. SIGNIFICANCE STATEMENT: Inhaled chemical threats are of growing concern in both civilian and military settings, and there is an increased need to reduce acute lung injury and delayed clinical complications from exposures. This minireview highlights our current understanding of acute toxicity and pathophysiology of a select number of chemicals of concern. It discusses potential early-stage therapeutic development as well as challenges in developing countermeasures applicable for administration in mass casualty situations.


Assuntos
Lesão Pulmonar Aguda , Substâncias para a Guerra Química , Fosgênio , Humanos , Pulmão , Cloro/farmacologia , Cloro/toxicidade , Substâncias para a Guerra Química/toxicidade , Fosgênio/metabolismo , Fosgênio/farmacologia , Lesão Pulmonar Aguda/metabolismo , Irritantes
19.
J Pharmacol Exp Ther ; 388(2): 484-494, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37474260

RESUMO

Sulfur mustard (SM), a vesicating agent first used during World War I, remains a potent threat as a chemical weapon to cause intentional/accidental chemical emergencies. Eyes are extremely susceptible to SM toxicity. Nitrogen mustard (NM), a bifunctional alkylating agent and potent analog of SM, is used in laboratories to study mustard vesicant-induced ocular toxicity. Previously, we showed that SM-/NM-induced injuries (in vivo and ex vivo rabbit corneas) are reversed upon treatment with dexamethasone (DEX), a US Food and Drug Administration-approved, steroidal anti-inflammatory drug. Here, we optimized NM injuries in ex vivo human corneas and assessed DEX efficacy. For injury optimization, one cornea (randomly selected from paired eyes) was exposed to NM: 100 nmoles for 2 hours or 4 hours, and 200 nmoles for 2 hours, and the other cornea served as a control. Injuries were assessed 24 hours post NM-exposure. NM 100 nmoles exposure for 2 hours was found to cause optimal corneal injury (epithelial thinning [∼69%]; epithelial-stromal separation [6-fold increase]). In protein arrays studies, 24 proteins displayed ≥40% change in their expression in NM exposed corneas compared with controls. DEX administration initiated 2 hours post NM exposure and every 8 hours thereafter until 24 hours post-exposure reversed NM-induced corneal epithelial-stromal separation [2-fold decrease]). Of the 24 proteins dysregulated upon NM exposure, six proteins (delta-like canonical Notch ligand 1, FGFbasic, CD54, CCL7, endostatin, receptor tyrosine-protein kinase erbB-4) associated with angiogenesis, immune/inflammatory responses, and cell differentiation/proliferation, showed significant reversal upon DEX treatment (Student's t test; P ≤ 0.05). Complementing our animal model studies, DEX was shown to mitigate vesicant-induced toxicities in ex vivo human corneas. SIGNIFICANCE STATEMENT: Nitrogen mustard (NM) exposure-induced injuries were optimized in an ex vivo human cornea culture model and studies were carried out at 24 h post 100 nmoles NM exposure. Dexamethasone (DEX) administration (started 2 h post NM exposure and every 8 h thereafter) reversed NM-induced corneal injuries. Molecular mediators of DEX action were associated with angiogenesis, immune/inflammatory responses, and cell differentiation/proliferation, indicating DEX aids wound healing via reversing vesicant-induced neovascularization (delta-like canonical Notch ligand 1 and FGF basic) and leukocyte infiltration (CD54 and CCL7).


Assuntos
Substâncias para a Guerra Química , Lesões da Córnea , Gás de Mostarda , Animais , Humanos , Coelhos , Mecloretamina/toxicidade , Irritantes/efeitos adversos , Substâncias para a Guerra Química/toxicidade , Ligantes , Córnea , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Gás de Mostarda/toxicidade , Dexametasona/farmacologia , Dexametasona/uso terapêutico
20.
J Pharmacol Exp Ther ; 388(2): 536-545, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37652710

RESUMO

Phosgene oxime (CX), categorized as a vesicating chemical threat agent, causes effects that resemble an urticant or nettle agent. CX is an emerging potential threat agent that can be deployed alone or with other chemical threat agents to enhance their toxic effects. Studies on CX-induced skin toxicity, injury progression, and related biomarkers are largely unknown. To study the physiologic changes, skin clinical lesions and their progression, skin exposure of SKH-1 and C57BL/6 mice was carried out with vapor from 10 µl CX for 0.5-minute or 1.0-minute durations using a designed exposure system for consistent CX vapor exposure. One-minute exposure caused sharp (SKH-1) or sustained (C57BL/6) decrease in respiratory and heart rate, leading to mortality in both mouse strains. Both exposures caused immediate blanching, erythema with erythematous ring (wheel) and edema, and an increase in skin bifold thickness. Necrosis was also observed in the 0.5-minute CX exposure group. Both mouse strains showed comparative skin clinical lesions upon CX exposure; however, skin bifold thickness and erythema remained elevated up to 14 days postexposure in SKH-1 mice but not in C57BL/6 mice. Our data suggest that CX causes immediate changes in the physiologic parameters and gross skin lesions resembling urticaria, which could involve mast cell activation and intense systemic toxicity. This novel study recorded and compared the progression of skin injury to establish clinical biomarkers of CX dermal exposure in both the sexes of two murine strains relevant for skin and systemic injury studies and therapeutic target identification. SIGNIFICANCE STATEMENT: Phosgene oxime (CX), categorized as a vesicating agent, is considered as a potent chemical weapon and is of high military and terrorist threat interest since it produces rapid onset of severe injury as an urticant. However, biomarkers of clinical relevance related to its toxicity and injury progression are not studied. Data from this study provide useful clinical markers of CX skin toxicity in mouse models using a reliable CX exposure system for future mechanistic and efficacy studies.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Fosgênio , Animais , Camundongos , Fosgênio/toxicidade , Modelos Animais de Doenças , Gás de Mostarda/toxicidade , Camundongos Endogâmicos C57BL , Pele , Irritantes/toxicidade , Eritema/induzido quimicamente , Eritema/patologia , Biomarcadores , Oximas/toxicidade , Substâncias para a Guerra Química/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...